Qt Signal Slot Const Reference
- Qt Signal Slot Const Reference Sheet
- Qt Signal Slot Const Reference Guide
- Qt Signal Slot Const Reference Generator
- Qt Signal Slot Const Reference Example
Introduction
- signal void QGroupBox:: clicked (bool checked = false) This signal is emitted when the check box is activated (i.e., pressed down then released while the mouse cursor is inside the button), or when the shortcut key is typed. Notably, this signal is not emitted if you call setChecked.
- Outgoing events supported by the COM object are emitted as standard Qt signals. Connect (webBrowser, SIGNAL (TitleChanged (QString)), this, SLOT (setCaption (QString))); QAxBase transparently converts between COM data types and the equivalent Qt data types.
- Void QCompleter:: activated ( const QString & text) signal This signal is sent when an item in the popup is activated by the user (by clicking or pressing return). The item's text is given. Void QCompleter:: activated ( const QModelIndex & index) signal This signal is sent when an item in the popup is activated by the user.
Void QCompleter:: activated ( const QModelIndex & index) signal This signal is sent when an item in the popup is activated by the user. (by clicking or pressing return). The item's index in the completionModel is given. Void QCompleter:: complete ( const QRect & rect = QRect ) slot. Signals and Slots Signals and slots are used for communication between objects. The signal/slot mechanism is a central feature of Qt and probably the part that differs most from other toolkits. In most GUI toolkits widgets have a callback for each action they can trigger. This callback is a.
Remember old X-Window call-back system? Generally it isn't type safe and flexible. There are many problems with them. Qt offer new event-handling system - signal-slot connections. Imagine alarm clock. When alarm is ringing, signal is sending (emitting). And you're handling it as a slot.
- Every QObject class may have as many signals of slots as you want.
- You can emit signal only from that class, where signal is.
- You can connect signal with another signal (make chains of signals);
- Every signal and slot can have unlimited count of connections with other.
- ATTENTION! You can't set default value in slot attributes. e.g.
void mySlot(int i = 0);
Connection
You can connect signal with this template:QObject::connect ( const QObject * sender, const char * signal, const QObject * receiver, const char * method);
You have to wrap const char * signal and const char * method into SIGNAL () and SLOT() macros.
And you also can disconnect signal-slot:QObject::disconnect ( const QObject * sender, const char * signal, const QObject * receiver, const char * method);
Deeper
Widgets emit signals when events occur. For example, a button will emit a 'clicked' signal when it is clicked. A developer can choose to connect to a signal by creating a function (a 'slot') and calling the connect()
function to relate the signal to the slot. Qt's signals and slots mechanism does not require classes to have knowledge of each other, which makes it much easier to develop highly reusable classes. Since signals and slots are type-safe, type errors are reported as warnings and do not cause crashes to occur.
For example, if a Quit button's clicked()
signal is connected to the application's quit()
slot, a user's click on Quit makes the application terminate. In code, this is written as
connect(button, SIGNAL (clicked()), qApp, SLOT (quit()));
Connections can be added or removed at any time during the execution of a Qt application, they can be set up so that they are executed when a signal is emitted or queued for later execution, and they can be made between objects in different threads.
The signals and slots mechanism is implemented in standard C++. The implementation uses the C++ preprocessor and moc, the Meta-Object Compiler, included with Qt. Code generation is performed automatically by Qt's build system. Developers never have to edit or even look at the generated code.
How often is a an object copied, if it is emitted by a signal as a const reference and received by a slot as a const reference? How does the behaviour differ for direct and queued signal-slot connections? What changes if we emit the object by value or receive it by value?
Nearly every customer asks this question at some point in a project. The Qt documentation doesn’t say a word about it. There is a good discussion on stackoverflow, which unfortunately leaves it to the reader to pick the right answer from all the answers and comments. So, let’s have a systematic and detailed look at how arguments are passed to signals and slots.
Setting the Stage
For our experiments, we need a copyable class that we will pass by const reference or by value to signals and slots. The class – let’s call it Copy
– looks as follows.
The copy constructor and the assignment operator simply perform a member-wise copy – like the compiler generated versions would do. We implement them explicitly to set breakpoints or to print debugging messages. The default constructor is only required for queued connections. We’ll learn the reason later.
We need another class, MainView
, which ultimately derives from QObject
. MainView provides the following signals and slots.
MainView
provides four signal-slot connections for each connection type.
The above code is used for direct connections. For queued connections, we comment out the first line and uncomment the second and third line.
The code for emitting the signals looks as follows:
Direct Connections
sendConstRef => receiveConstRef
We best set breakpoints in the copy constructor and assignment operator of the Copy
class. If our program only calls emit sendConstRef(c)
, the breakpoints are not hit at all. So, no copies happen. Why?
The result is not really surprising, because this is exactly how passing arguments as const references in C++ works and because a direct signal-slot connection is nothing else but a chain of synchronous or direct C++ function calls.
Nevertheless, it is instructive to look at the chain of function calls executed when the sendConstRef
signal is emitted.
The meta-object code of steps 2, 3 and 4 – for marshalling the arguments of a signal, routing the emitted signal to the connected slots and de-marshalling the arguments for the slot, respectively – is written in such a way that no copying of the arguments occurs. This leaves us with two places, where copying of a Copy
object could potentially occur: when passing the Copy
object to the functions MainView::sendConstRef
or MainView::receiveConstRef
.
These two places are governed by standard C++ behaviour. Copying is not needed, because both functions take their arguments as const references. There are also no life-time issues for the Copy
object, because receiveConstRef
returns before the Copy
object goes out of scope at the end of sendConstRef
.
sendConstRef => receiveValue
Based on the detailed analysis in the last section, we can easily figure out that only one copy is needed in this scenario. When qt_static_meta_call
calls receiveValue(Copy c)
in step 4, the original Copy
object is passed by value and hence must be copied.
sendValue => receiveConstRef
One copy happens, when the Copy
object is passed by value to sendValue
by value.
sendValue => receiveValue
Qt Signal Slot Const Reference Sheet
This is the worst case. Two copies happen, one when the Copy
object is passed to sendValue
by value and another one when the Copy
object is passed to receiveValue
by value.
Queued Connections
A queued signal-slot connection is nothing else but an asynchronous function call. Conceptually, the routing function QMetaObject::activate
does not call the slot directly any more, but creates a command object from the slot and its arguments and inserts this command object into the event queue. When it is the command object’s turn, the dispatcher of the event loop will remove the command object from the queue and execute it by calling the slot.
When QMetaObject::activate
creates the command object, it stores a copy of the Copy
object in the command object. Therefore, we have one extra copy for every signal-slot combination.
We must register the Copy
class with Qt’s meta-object system with the command qRegisterMetaType('Copy');
in order to make the routing of QMetaObject::activate
work. Any meta type is required to have a public default constructor, copy constructor and destructor. That’s why Copy
has a default constructor.
Queued connections do not only work for situations where the sender of the signal and the receiver of the signal are in the same thread, but also when the sender and receiver are in different threads. Even in a multi-threaded scenario, we should pass arguments to signals and slots by const reference to avoid unnecessary copying of the arguments. Qt makes sure that the arguments are copied before they cross any thread boundaries.
Qt Signal Slot Const Reference Guide
Conclusion
Qt Signal Slot Const Reference Generator
The following table summarises our results. The first line, for example, reads as follows: If the program passes the argument by const reference to the signal and also by const reference to the slot, there are no copies for a direct connection and one copy for a queued connection.
Qt Signal Slot Const Reference Example
Signal | Slot | Direct | Queued |
---|---|---|---|
const Copy& | const Copy& | 0 | 1 |
const Copy& | Copy | 1 | 2 |
Copy | const Copy& | 1 | 2 |
Copy | Copy | 2 | 3 |
The conclusion from the above results is that we should pass arguments to signals and slots by const reference and not by value. This advice is true for both direct and queued connections. Even if the sender of the signal and the receiver of the slot are in different threads, we should still pass arguments by const reference. Qt takes care of copying the arguments, before they cross the thread boundaries – and everything is fine.
By the way, it doesn’t matter whether we specify the argument in a connect call as const Copy&
or Copy
. Qt normalises the type to Copy
any way. This normalisation does not imply, however, that arguments of signals and slots are always copied – no matter whether they are passed by const reference or by value.